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We solve the optimal control problem for the final state of a moving object in 
the case when there is an error in the execution of the control action and con- 

straints are imposed on the control resources. The stabilization problem for sys- 
tems in which the hindrance depends upon the magnitude of the control action 
was examined earlier in [ 11. The optimal control problem with errors in the 
execution of the control action without constraints on the control function was 

examined in [2]. Certain other optimal correction problems with random per- 
turbations were examined in D - 61. 

1, Statsment of the problem. Let the controlled motion of a material 
point be described by the equation 

~2x~dt2 = u (0 + Cl I u I m:2 E (4 + c,q (t), x (to) = x0, x’ (to) = 2; (1.1) 

Here t is time, z is a scalar phase coordinate, u is the control function, the quantity 

lul *:2 has the meaning of the intensity of the perturbations caused by the action of 

the control, m is some positive number, being a parameter of the problem, 5 and 11 
are independent Gaussian noises of unit intensity, c1 and ca are positive constants. 

We are required to find the control satisfying the integral constraint 

having the sence of a constraint on the control resources, and minimizing at a finite 
instant T the mean of the following function of the phase coordinate: 

J = F Ix (T)l (1.3) 

The function F sets a certain measure of the system’s deviation from zero. We assume 
that it possesses the properties of evenness, nonnegativeness and strict monotonicity and 
convexity,namely 

F (x) > 0, F (0) = 0, F (cc) = F (-5); F’ (r) > 0, F”(x) > 0, x> 0 
(1.4) 

The problem formulated models the problem of optimal correction of the lateral de- 

flection on an object in a random force field in the case when additional random per- 
turbations arise, being a consequence of the control force action. We introduce the new 
variable Y = (T - t) x’ + x. Equation (1.1) takes the form 

dyidt = (T - t) (1~ + CI 1 U 1 mi2 El + CZ~>, Y (to) = Yo (1.5) 

Since y (T) = x (I’), the functional (1.3) is written in just the same form as before. 
The equation 
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dyldt = a (t) [u + c I u I m/2 El + b (t) q, y (t,) = ye 0.6) 

is a generalization of Eq. (I. 5). Here c is a positive constant, u (t), b (t) are smooth 

monotonically-decreasing functions having the meaning of the intensity of control and 
of noise, respectively. Without loss of generality we can assume that 

a (t) > 0, b (t) > 0, 0 < t < T; a (T) -= b (T) = 0 

We seek a control satisfying constraint (1.2) and minimizing the mean of functional 

(1.3). 

2, Fundrmsntrt squrtfont, Let us set up the Bellman-Isaacs equation for 

problem (1.6) with functional (1.3). We introduce the variable Q: having the meaning 

of unspent control resource. The equation and the boundary condition for Q 

dqldt = - I u I7 q (44 = qn > 0, q (T) > 0 (2.1) 

follows from condition (1.2). 
bet S (t, Y, q) be the minimum value of the mean of functional 8’ [Y (T)], which 

can be achieved under the initial conditions to = t, Y, = Y, qO = q in problem 
(1.6), (2.1). The Bellman equation for function S has the form [5, 61 

Here T - t -;I “G is reverse time, the subscripts on function S denote the taking of 

the corresponding partial derivatives, a (r) and b (T) denote the functions a (t) and 
b (t) with the change of variables t = T - r.To Eq. (2.2) we add on the initial con- 
dition 

S (0, Y7 9) = F (Yf (2.3) 

From the problem’s statement, the properties (1.4) of function F and the assumption 

of smoothness of function S in the variable Y it follows that 

S (z, Y, q) = S (‘t., -Y, q), sign S, = sign Y (2.4) 

The first property reflects the evenness of function S, the second one follows from the 
fact that the greater the deflection 1 y, 1 in (1.6) the greater the final deflection 
1 y (T) / , other conditions being equal. From (2.4) follows the validity of the boundary 
condition S y CT, 0, q) = 0 (2.5) 

Let us carry out the operation of taking the mi~mum in (2.2) in the region Y > 0. 
It is clear that u f 0 in this region. If m> 1, then in order for the minimum of 
the expression on the right-hand side of (2.2) to be finite, it is necessary that S yII > 0. 
If. however, m < 1, then by the same considerations it is necessary that the condition 
S, + a (7) S, < 0 be fulfilled; otherwise we get that S, = - co and, conse- 
quently, St = + 00 since 7 = T - t . The latter signifies that the average mag- 
nitude of the gross error prescribed by function S grows with increasing rime t \< T 
which contradicts the physical sense of the problem. The case m = 1 will be analyzed 
separately. 

By computing the minimum of the right-hand side of (2.2), in the region y > 0 we 
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obtain, with due regard to the fact that here u < 0 , 

U = _ (J_)I:(m-I)[ $ILs;;; ym-l) 

From (2.6) it follows that in the region y > 0 Eq. (2.2) takes the form 

(2.6) 

i-m 1 
A%=--- - 

\l/(rn-1) ( 1 
[Sq + qp(m-l) 
[‘/ml* S,,]w+1) + f ww (2.7) m m 

Thus, the problem is reduced to seeking the solution of Eq. (2.7), depending on the num- 
ber m > 0 as if on a parameter and satisfying the boundary conditions (2.3), (2.5). 

3, Construction of the aolutiohn, 3.1. Case m> 1. As we have 
already noted, in this case it is necessary that S v r, > 0. Taking properties (1.4) and 
(2.4) into account, we can reckon that 

S,,>O, Y>O (3.1) 

Using formula (2.6) we write Eq. (2.7) in the following form : 

ST = ‘1% (I- m) I u I” ~1’ (r) St,, + ‘/zb’ (z) G,, (3.2) 

We consider two cases: 

a) b (z) = 0. Assuming that u < 0 and taking into account that m > ‘i and 
property (3.1). from (3.2) we get that S, < 0 when y > Cl (we recall that T - t = 
't is reverse time) and, consequently, the value of function S increases monotonically 
as time t < T increases. This signifies that in the presence of any control u # 0 
the magnitude of the gross error given by function (1.3) can only grow and, by the same 

token, any control leads to a worsening of the situation in the sense of criterion (1.3). 
Therefore, it is necessary that u = 0. From Eqs. (1.6) and (2.1) it follows that in this 

case y = const, q = const and S = F (Y). The case we have considered has a 
simple physical meaning. In this case the error in the execution of the control action 

is so large that it surpasses the contribution of the control action itself and, therefore, 

u = 0 is a better method for controlling the system. 
b) b (.c) + 0. In this case it is necessary that the inequality 

1 bZ (Q ulG (m-l)aP(r) 1 
1/m 

(3.3) 

be fulfilled. Indeed, if inequality (3.3) is violated, then from (3.2) it follows that 
S, < 0, and we arrive at the situation described above. let us show that the optimal 
control is given by the value 

[ 
b2 CT) 

1 
lb 

UC- 
(m - 1) a12 (T) _ ’ Y>O (3.4) 

let Sr be the solution of Eq. (3.2) with boundary conditions (2.3). (2.5), corresponding 
to the value of control u determined by formula (3.4). From (3.2) and (3.4) it follows 
that ST1 = 0 in region y > 0. By Ss we denote the solution of Eq. (3.2). correspond- 

ing to any control satisfying the strict inequality (3.3). From (3.2) and (3.3) it follows 
that ST2 > 0 in region y > 0 , Then we get that 

~(SLs2)<0, y>o, (S’-S~)Ir=O==O 
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The last equality follows from boundary condition (2.3). Consequently, S’ - s” 4 0, 
y > 0. This signifies that the value of function A”, corresponding to control (3.4). is 
always less than the value of function Ss, corresponding to any other one from the set 
of possible controls given by strict inequality (3.3). From (2.1) we obtain that under 

control (3.4) 

Let t* be that instant at which the entire stock of control resource with a control func- 

tion defined by formula (3.4) is exhausted for given values of t,, and go, i. e. q,,t q (t*), 
If t* > T, the control resource stock turns out to be sufficient to carry out control (3.4) 

up to the final instant 2’. From (3.2) and (3.4) it follows that S, = 0 and boundary 

conditions (2.3), (2.5) are fulfilled. In this case the function S = F (y) is a solu- 
tion of the problem. 

If t* < T, the control resource stock is insufficient to carry out the control (3.4) 

up to final instant T. IS this case 8, = 0 for 0 < t = T - z < t* -and S, z= 

VzbaS II ,, when t* < t = T - z < 1’ for given values of to, qo. The solution of 
the problem is determined by the formulas 

Here 

S= 
i 

s (‘t*, y,q) z* <z < T 

s (z, y, 9) 0 < fc < T - a* 

S(z,y,q) = 12~~~(~)~~1~~(~) x 
0 

(3.5) 

B(z) = fb3(z)dz, ‘t* = T - t’ 
0 

Thus, in the case being considered the control (3.4) is carried out from the initial inst- 
ant to to the instant t* depending upon the magnitude q. of the unspent control resource, 
and when it is exhausted, the oontrol u = 0 and the system is subject only to the ex- 
ternal random forces. 

3.2. C as e m = 1. To analyze this case we apply the method used in p J. We 
set 

G = 1/2a12 S,, - S, - a(z) S, 

Then for m + I Eq. (2.7) can be written as 

s ‘=~(,)1’,ml’a12(1 - ‘h~tS,,)mJim-l)SUU+~b~~~, (3.6) 

We pass to the limit in (3.6) as m --z 1, taking into account here that S flfl > 0 
when y # 0. If G < 0 at some point of region y > 0, then the limit of the 
right-hand side of (3.6) turns out to equal infinity as m + 1, which is meaningless. 
Therefore, it is necessary to fulfill G > 0 everywhere in the region y > 0 . let D, 
be that part of the region wherein G > cf. In domain D,, passing to the limit in Eq. 
(3.3) as m --t 1 , we obtain 
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S, = l12b2 (z) Syy, ‘lza2, (z)Su, - S,-- a (7) S, > 0 (3.7.) . 

In this case it follows from (2.6) that u. ~1 0 in D1 . The equality 

l/2Q2 (r> s,, - s, - a (r) s, I- 0 (3.3) 

is fulfilled in the remaining part of the region y > 0, which we denote by De. Here 
it follows from (2.6) that rk < 0. 

Domains D, and D, have the following meaning. In domain D,, wherein u = 0, 
an uncontrolled motion takes place under the action of random forces; in domain Da, 

as we can conclude from (3.4). by passing to the limit as n -+ 1 , an instantaneous 
impulse correction takes place fu is a delta function of time). From what has been 

said it is clear that the determination of the boundary r separating domains D, and 
Dz completely solves the optimal control synthesis problem in this case. 

A like problem was examined previously in [S, 61. As in the cases considered in [5, 
6] we can show that the solution of problem (3.7), (3.8) and the determination of the 
boundary ‘r of domains D, and D2 reduce to solving a nonlinear boundary-value prob- 

lem. We have not succeeded in writing out the solution of problem (3.Q (3.8) in closed 
form in the general case; however, this can be done in the case when the external ran- 
dom actions are absent, i.e. when b (z) - 0. In this case domain D, coincides with 

the set prescribed by the equations y = 0, (I =: 0. 
In fact, from the original Eqs, (1.1) we can conclude that if y = 0 at some instant 

t*, then it is sufficient to set u = 0 for t > t*, in order to obtain y = 0 by the instant 

t = T. The Bellman function S = 0. t* < t < T, the phase coordinates of the point, 

and the dontrol resource stock (see (2.1)) do not vary. We note that the second of con- 
ditions (3.7) is not fulfilled here since the passage to the limit in (3.6) was carried out 
under the a~umption that y # 0. It is clear as wefl that the set Q = 0 belongs to do- 
main Dr. However, both conditions (3.7) should now be fulfilled on this set. 

We prolong the function S (0, y, q) continuously onto negative values of y with con- 

tinuity preserved 
S Cl, Y, $4 = t;; (Yf, 9 d 0 

Here F, is an unknown function satisfying the condition 

F, (0) 5 F (0) = 0 

We seek the solution of problem (3.8) with initial condition (2.3) and boundary condition 

(2.5) in the form 9” 

S(r.?U?)=j [P(Y--,Q;z)F(h)-:-p(Yfh,q;z)F1(1)1dh 

Here 

Using condition (2.5) we obtain the identity 

Hence,since al -- ca (t) 

F1(h) = - 
3 

Finally we obtain 
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The function S determined by formula (3.9) serves as the solution of Eq, (3.8) in the 
region !I > 0 with boundary conditions (2.3)” (2.5), Making the change of variable 
z = h + (r (r) Q iR (3.9), we ObtaiR & 

Tending p - 0 , by virtue of the properties of the fundamental solution of parabolic-type 

equations (for example, see p], p. 14) we get that 

s(z,y,q)+F(Y--(~)Q), q--+0 

The function F (Y - a (t) Q) satisfies both conditions (3.7) when p = 0 ; moreover, the 

fulfillment of these conditions is to be understood in this case as the fulfillment of the 
boundary conditions for the function 

F (Y - a (z) q) for q = 0. 

Thus, the function S constructed by formula (3.9) satisfies all the conditions of problem 

(3,7), (3. S), whence follows the required assertion that domain D, is given by the equa- 
tions y = 0, q = 0. 

3.3. Case m < 1. As already noted in the derivation of Eq. (2.7). the necessary 
condition in this case is the fulfillment of the inequality 

S, +a(t)Sy\(O, when y>O 

Using (2.6) we write Eq. (2.7) in the following form: 

(3.10) 

Here u is determined by formula (2.6). We consider two cases: 
a) The external random perturbations are absent: b (z) = 0 . Let u < 0 and 

8, + @ (r) s, < 9. Since m < 1, it follows from (3.10) that S, < 0, and we 
arrive at the situation described in case 3. The latter signifies that an optimal control 
u + 0 does not exist if S, + cc (t) S, < 0 and, consequently, only the case S, -+- 
~8 (r) L@?, = 0 can be realized. In order to ascertain what the right-hand side of Eq. 

(3.10) turns into here, we make the following passage to a limit. We set SQ + 

a (r) S, = li < 0 and we tend 8 + - 0, Taking into account that m < 1, from 

i. e. Eq, (3,lO) takes the form S, = + co. This signifies that an instantaneous irnc 
p&e correction takes place (TV is a delta function of time), as a result of which the 
phase point is displaced along the direction of the characteristics tl = y - a (‘r) 4, 

rl = cQRst, of the equation S, + a (7) S r = 0. In this case the solution of the 
problem coincides with the solution of the corresponding deterministic problem, namely, 
the problem without random perturbations, and is determined by the formula 
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s by, 4) = ( 0, Y < a WC? 
F (Y - a (4 4, Y > a (4 q 

We recall that a (‘6) Is a monotonically increasing function and a (0) -- 0. Thus, in 
this case the impulse correction takes place at the initial instant, as a result of which 
either the phase point hits onto the set .I/ = 0 or the control resource stock is complet- 

ely exhausted. 

b) b (‘t.) # 0. We write Eq. (2.7) in form (3.2) and (3.10). Then it is necessary 
that 

- q%l [S, + a (z) S,] = (+) 1 u I” aI2 CT) SW (3.11) 

If S, + a (T) S, < 0, then by virtue of the fact that S,, > 0 for y > 0 and 
u < 0, m < 1, we get that equality (3.11) can be fulfilled only for u = 0. Coxe- 
quently, in that part of region y > 0, wherein S, + a (T) S, < 0, it is necessary 
that u = 0 and that the equation 

A!& = %b’(z)S,, (3.12) 

be fulfilled. We denote this set by 52,. By Q, we denote that remaining part of region 
y > 0, wherein 

s, +a(z)S,=0 (3.13) 

The problem is reduced to seeking the boundary J? of domains G?, and Q, and to 

solving Eqs. (3.12) in domain 51, and (3.13) in domain 52,. But this problem has been 

examined in [5. 61 where it was shown that domains Sz, and a, have the following 
meaning. In domain ~;2,, wherein u = 0 , an uncontrolled motion takes place under 

the action of the random forces; in domain 52,) u < 0 and an instantaneous impulse 
correction takes place (U is a delta function of time), as a result of which the phase 
point is moved along the corresponding characteristics q = y - a (7) q, y = con& 

of Eq. (3.13). As a result of the correction either the point turns out to be on boundary 
r of domains Q, and 9, or the control resource stock is completely exhausted. It is 

clear that the determination of boundary r completely solves the optimal control syn- 

thesis problem in this case. As was shown in [S] the determination of boundary r redu- 
ces to the solving of a nonlinear boundary-value problem. The position of boundary r 
when a (a) = b (a) = T - t, i.e. in the case corresponding to problem (1.5). was 
found numerically in [5] by means of introducing self-similar variables. 

Thus when m < 1 , the solution of the problem posed coincides with the solution of 
the corresponding problem without error in execution of the control action. 

The author thanks M. L. Lidov for drawing the author’s attention to the problem and 
F, L. Chemous’ko for useful discussions and advice. 

REFERENCES 

1. Krasovskii. N. N., On the stabilization of systems in which the hindrance 

depends on the magnitude of the control action. Tekhn. Kibernetika. Np2.1965. 

2. Kurzhanskii, A. B., Computation of the optimal control in a system with 

incomplete information. Differentsial’nye Uravneniia, Vol. 1, Nn 3. 1965. 
3. Okhotsimskii, D, E., Riasin, V. A. and Chentsov. N. N., Optimal 

strategy under correction. Dokl. Akad. Nauk SSSR, Vol. 175. Np 1. 1967. 



Solution of certain optimal correction problems 409 

4. Iaroshevskii, V. A. and Petukhov, 5, V. , Optimal one-parameteric 

correction of the trajectories of spacecrafts, Kosmicheskie Issledovaniia, Vol. 8. 

Np4, 1970. 

5. Chernous’ko, F, L, , Self-similar solutions of the Bellman equation for optimal 

correction of random disturbances. PMM Vol. 35, Np2, 1971. 

6. Bratus’, A,S. and Chernous’ko, F. L., Numerical solution of optimal 

correction problems under random perturbations. (English translation), Pergamon 

Press, J. USSR Comput. Math. mat. Phys., Vol. 14, Npl, 1974. 

7. E id e 1’ m an , S . D . , Parabolic Systems. Moscow, “Nauka”, 1964. 

Translated by N, H, C, 

UDC 62-50 

~~~~ZAT~~ OF THE I~T~~L STINTS OF THE KINETIC SNERGY 

OF A HARMONIC OSCILLATOR BY AN IMPULSE CONTROL 

PMM Vol. 38, No 3, 1974, pp. 441-450 
S,T. ZAVAL~HCHIN and A. N. SESEKIN 

(Sverdlovsk) 

(Received July 23, 1973) 

The kinetic energy of the transient response of a harmonic oscillator is minimi- 
zed by actions with a bounded current total momentum. Such a problem arises, 

for example, when choosing a mass flow program minimizing the kinetic energy 
of transfer of a satellite into a circular orbit by a reactive force having the di- 
rection of the Earth’s gravitational force (see El], p. 32). It is shown that the 
optimal control contains an impulse component. This leads to the violation of 

the optimality principle for extremals. Therefore, the synthesis procedure is 

based on the analysis of an auxiliary variational problem under the usual COD- 

straints on the control [Z]. 

1. Statement of the problem and it: reduction. Lettheplantbe 
described by the differential equation of a controlled harmonic oscillator 

5’. + 0% = ku (%k#O) (1.1) 
(where u is the control) 

u(t)=O(t<O); IY~u]@)/<;~, IvIu](l)= j: u(z)d’c (1.2) 
--m 

Here Y [ul (t) is a quantity proportional to the current value of the tocal momentum 
of the control force, We examine the autput 2 [x:u, 10’; ~1 (t) of plant (l.l), corres- 
ponding to the initial conditions 

5 15*, r;; ul (0) = x0, z’ Lro, z,‘; 281 (0) = x*:O’ (1.3) 

and to some program u (t), subject to requirements (1.2). We define the control’s per- 
formance index m 

A 1~ 50, @I= s Is’ I% so’, @I W” 32 0.4) 
0 


